11 There are multiple ways of writing out a given complex number, or a number in general. Usually we reduce things to the "simplest" terms for display -- saying $0$ is a lot cleaner than saying $1-1$ for example. The complex numbers are a field. This means that every non-$0$ element has a multiplicative inverse, and that inverse is unique.
Is there a formal proof for $(-1) \\times (-1) = 1$? It's a fundamental formula not only in arithmetic but also in the whole of math. Is there a proof for it or is it just assumed?
Possible Duplicate: How do I convince someone that $1+1=2$ may not necessarily be true? I once read that some mathematicians provided a very length proof of $1+1=2$. Can you think of some way to
There are infinitely many possible values for $1^i$, corresponding to different branches of the complex logarithm. The confusing point here is that the formula $1^x = 1$ is not part of the definition of complex exponentiation, although it is an immediate consequence of the definition of natural number exponentiation.
Possible Duplicate: Prove 0! = 1 0! = 1 from first principles Why does 0! = 1 0! = 1? All I know of factorial is that x! x! is equal to the product of all the numbers that come before it. The product of 0 and anything is 0 0, and seems like it would be reasonable to assume that 0! = 0 0! = 0. I'm perplexed as to why I have to account for this condition in my factorial function (Trying to learn ...
The other interesting thing here is that 1,2,3, etc. appear in order in the list. And you have 2,3,4, etc. terms on the left, 1,2,3, etc. terms on the right. This should let you determine a formula like the one you want. Then prove it by induction.